Discrete-mode cancellation mechanism for high-Q integrated optical cavities with small modal volume.

نویسندگان

  • Aristeidis Karalis
  • Steven G Johnson
  • J D Joannopoulos
چکیده

A mechanism to reduce radiation loss from integrated optical cavities without a complete photonic bandgap is introduced and demonstrated. It is applicable to any device with a patterned substrate (including both low and high index-contrast systems), when it supports discrete guided or leaky modes through which power escaping the cavity can be channeled into radiation. One then achieves the associated increase in Q by designing the cavity such that the near-field pattern becomes orthogonal to these discrete modes, therefore canceling the coupling of power into them and thus reducing the total radiation loss. The method is independent of any delocalization mechanism and can be used to create high-Q cavities with small modal volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcavity confinement based on an anomalous zero group-velocity waveguide mode.

We propose and demonstrate a mechanism for small-modal-volume high-Q cavities based on an anomalous uniform waveguide mode that has zero group velocity at a nonzero wave vector. In a short piece of a uniform waveguide with a specially designed cross section, light is confined longitudinally by small group-velocity propagation and transversely by a reflective cladding. The quality factor Q is gr...

متن کامل

Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap.

We show how an electromagnetic cavity with arbitrarily high Q and small (bounded) modal volume can be formed in two or three dimensions with a proper choice of dielectric constants. Unlike in previous work, neither a complete photonic bandgap nor a trade-off in mode localization for Q is required. Rather, scattering and radiation are prohibited by a perfect mode match of the TE-polarized modes ...

متن کامل

Cavity quantum electro dynamics (CQED) involving (visible) light has attracted quite some attention since the fabrication of o

Cavity quantum electro dynamics (CQED) involving (visible) light has attracted quite some attention since the fabrication of optical cavities with ultra-high quality factors (Q-factors) enabled the strong coupling between cavity photons and single optical emitters. The latter are typically established in form of optical transitions in cold atoms or excitonic transitions in molecules or quantum ...

متن کامل

Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate

Optomechanical crystal (OMC) cavities which exploit the simultaneous photonic and phononic bandgaps in periodic nanostructures have been utilized to colocalize, couple, and transduce optical and mechanical resonances for nonlinear interactions and precision measurements. The development of near-infrared OMC cavities has difficulty in maintaining a high optomechanical coupling rate when scaling ...

متن کامل

Semiconductor Optical Microcavities for Chip-Based Cavity QED

Optical microcavities can be characterized by two key quantities: an effective mode volume Veff, which describes the per photon electric field strength within the cavity, and a quality factor Q, which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q offer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics (cavity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 29 19  شماره 

صفحات  -

تاریخ انتشار 2004